# TABLE OF CONTENTS

**Executive Summary** ............................................................................................................. ES-1  
ES.1 Need for Transportation Improvements in the Study Area ................................................ ES-2  
   Need for Additional East-west Capacity ............................................................................. ES-2  
   Increase in Travel Time Resulting from Congestion ......................................................... ES-3  
   Traffic Capacity and Excessive Intersection Delay ............................................................ ES-3  
ES.2 Purpose of the Corridor Study Process ............................................................................ ES-3  
ES.3 Alternatives Screening .................................................................................................... ES-3  
ES.4 Public Involvement ......................................................................................................... ES-6  
ES.5 Next Steps ................................................................................................................... ES-6  

1.0 **Background, Purpose, and Need** ...................................................................................... 1-1  
1.1 Background ....................................................................................................................... 1-1  
   1.1.1 Study Area ................................................................................................................. 1-1  
   1.1.2 Planning Studies Identifying a Need for SR-30 Improvements ..................................... 1-3  
   1.1.3 Study of Long-Term Transportation Needs .............................................................. 1-5  
   1.1.4 Transportation Analysis Tools .................................................................................. 1-5  
1.2 Need for Transportation Improvement .............................................................................. 1-7  
   1.2.1 Need for Additional East-west Capacity .................................................................... 1-7  
   1.2.2 The SR-30 and US-89 Connection on Main Street Cannot Adequately Serve Traffic Demand ............................................................................................................. 1-14  
1.3 Purpose of the Project ........................................................................................................ 1-16  

2.0 **Alternatives Screening** .................................................................................................. 2-1  
2.1 Step 1: Identify Alternatives ............................................................................................. 2-1  
2.2 Step 2: Preliminary Screening ........................................................................................... 2-2  
   2.2.1 Preliminary Screening Process .................................................................................. 2-2  
   2.2.2 Preliminary Screening Criteria ................................................................................ 2-2  
   2.2.3 Preliminary Screening Results ................................................................................ 2-2  
2.3 Step 3: Secondary Screening ........................................................................................... 2-4  
   2.3.1 Secondary Screening Process .................................................................................. 2-4  
   2.3.2 Secondary Screening Criteria ................................................................................ 2-4  
   2.3.3 Secondary Screening Results ................................................................................ 2-5  
2.4 Step 4: Alternatives Comparison ..................................................................................... 2-9  
   2.4.1 Alternatives Comparison Process .......................................................................... 2-9  
   2.4.2 Alternatives Comparison Results ........................................................................... 2-10  

3.0 **Public and Stakeholder Coordination** ......................................................................... 3-1  
3.1 Public Participation Process ........................................................................................... 3-1  
   3.1.1 Overview ................................................................................................................. 3-1  
   3.1.2 Outreach Components ........................................................................................... 3-1  
3.2 Public Comments and Responses ................................................................................... 3-6  
   3.2.1 Public Comments .................................................................................................... 3-7  
   3.2.2 Responses to Comments ......................................................................................... 3-12  

December 2010
LIST OF APPENDICES
(On CD)

Appendix A  Traffic Study
Appendix B  Alternatives Considered
Appendix C  Alternatives Screening Results Tables
Appendix D  Public Involvement

LIST OF FIGURES

Figure ES-1: Study Area ............................................................... ES-2
Figure ES-2: Alternatives Screening Process ......................................................... ES-4
Figure ES-3: Map of One-Way Couplets (Diverging West of 600 West) .............. ES-4
Figure ES-4: Map of 5 Lanes on 400 North .............................................................. ES-5
Figure ES-5: Map of 5 Lanes on 400 North (with Westward Extension) ............... ES-5
Figure ES-6: Map of 5 Lanes on 400 North (Connecting to SR-30 behind the Jail) ES-6
Figure 1-1: SR-30 Corridor Study Area ................................................................. 1-2
Figure 1-2: Existing Land Uses in the Study Area .................................................. 1-3
Figure 1-3: Project Development Flowchart ......................................................... 1-4
Figure 1-4: Planned Projects ................................................................................... 1-6
Figure 1-5: Cache County Population Growth ....................................................... 1-7
Figure 1-6: Population Change ................................................................................ 1-8
Figure 1-7: Employment Change ............................................................................. 1-9
Figure 1-8: License Plate Survey Results ............................................................... 1-11
Figure 1-9: Increase in Daily Traffic Volumes in the Study Area ......................... 1-12
Figure 1-10: Traffic Volumes and Capacity ............................................................ 1-13
Figure 1-11: Existing and 2035 Travel Time ............................................................ 1-14
Figure 1-12: Delay at Main Street and Intersection Level of Service ...................... 1-15
Figure 2-1: Alternatives Screening Process ............................................................ 2-1
Figure 2-2: Preliminary Screening Results Summary .............................................. 2-3
Figure 2-3: Travel Time Results ............................................................................. 2-6
Figure 2-4: Intersection LOS Results ................................................................. 2-7
Figure 2-5: Secondary Screening Results Summary ............................................... 2-8
Figure 2-6: Alternatives Comparison-Operational Considerations .......................... 2-11
Figure 2-7: Alternatives Comparison-Environmental Considerations ................. 2-14
Figure 2-8: Alternatives Comparison-Feasibility of Implementation ...................... 2-16
Figure 2-9: Map of One-Way Couplets (Diverging West of 600 West) ............... 2-17
Figure 2-10: Map of 5 Lanes on 400 North ............................................................. 2-17
Figure 2-11: Map of 5 Lanes on 400 North (with Westward Extension) .............. 2-18
Figure 2-12: Map of 5 Lanes on 400 North (Connecting to SR-30 behind the Jail) 2-18
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007 UUTP</td>
<td><em>Utah’s Unified Transportation Plan 2007-2030</em></td>
</tr>
<tr>
<td>2025 RTP</td>
<td><em>2025 Regional Transportation Plan</em></td>
</tr>
<tr>
<td>2030 RTP</td>
<td><em>2030 Regional Transportation Plan</em></td>
</tr>
<tr>
<td>CMPO</td>
<td>Cache Metropolitan Planning Organization</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>GOPB</td>
<td>Governor’s Office of Planning and Budget</td>
</tr>
<tr>
<td>I-15</td>
<td>Interstate 15</td>
</tr>
<tr>
<td>LOS</td>
<td>Level of Service</td>
</tr>
<tr>
<td>MPO</td>
<td>Metropolitan Planning Organization</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>SES</td>
<td>State Environmental Study</td>
</tr>
<tr>
<td>SR-252</td>
<td>State Route 252</td>
</tr>
<tr>
<td>SR-30</td>
<td>State Route 30</td>
</tr>
<tr>
<td>STIP</td>
<td><em>2010 Stateside Transportation Improvement Program</em></td>
</tr>
<tr>
<td>TAZ</td>
<td>traffic analysis zone</td>
</tr>
<tr>
<td>UDOT</td>
<td>Utah Department of Transportation</td>
</tr>
<tr>
<td>US-89/91</td>
<td>United States Route 89/91</td>
</tr>
<tr>
<td>USU</td>
<td>Utah State University</td>
</tr>
<tr>
<td>UT 23</td>
<td>Utah 23</td>
</tr>
</tbody>
</table>
Executive Summary
The State Route 30 (SR-30) Corridor Study (Corridor Study), prepared by the Utah Department of Transportation (UDOT), identifies long-term (2035), east-west transportation needs on SR-30 (also known as 200 North) between 1400 West and Main Street (U.S. Route 89/91 [US-89/91]) in Logan, Utah. The Corridor Study also assesses transportation improvement alternatives to address those needs. The original process that began in 2008 was to complete a State Environmental Study (SES) in preparation for construction of a roadway project in the SR-30 study area. However, a change in the funding situation occurred, and UDOT was forced to stop the SES process. Limited funding was made available in March 2010 to complete part of the process begun in the SES. The work completed during the SES process is documented in this Corridor Study.

The Corridor Study process produces an initial planning document that identifies the purpose and need for transportation improvements (Chapter 1) and compares alternatives to improve east-west mobility on SR-30 (Chapter 2). This Corridor Study also outlines how UDOT engaged the public and stakeholders during the project development process for the SR-30 SES and this Corridor Study (Chapter 3). In the future, UDOT will use this Corridor Study document as the basis for selecting a preferred alternative and preparing a more detailed environmental study. An environmental study must be completed prior to any roadway construction.

This Corridor Study evaluates transportation capacity and connectivity improvements to 1.75 miles of SR-30 (see Figure ES-1). The SR-30 study area is generally bound by 1400 West, 400 North, 200 East, and 200 North. Properties along both sides of the street are included in the study area. From a larger perspective, SR-30 is the only primary, east-west arterial roadway in Logan (Logan City 2008). The roadway provides local circulation within Logan and serves as a major regional transportation corridor from Interstate 15 (I-15) to the west, through Logan Canyon, and to the Wyoming state line to the east. However, the alignment is not a continuous roadway. The SR-30 alignment is interrupted at Main Street in Logan and requires vehicles to make a two-block north-south transition (between 200 North and 400 North) before continuing east-west. Additionally, along 400 North and through Logan Canyon, SR-30 shares a route with US-89, and this route is only signed as US-89.
ES.1 NEED FOR TRANSPORTATION IMPROVEMENTS IN THE STUDY AREA

Need for Additional East-west Capacity

Travel demand modeling indicates that as the population and employment increase in the Cache Valley, there will be an increase in traffic. The existing transportation system in the study area cannot accommodate this increase in traffic. Population growth in Logan coupled with increasing through traffic on SR-30 and US-89 will continue to place additional demands on the existing SR-30 study area’s transportation system. The traffic conditions and future projects are illustrated in Chapter 1. In general, motorists will continue to look for alternative routes as traffic volumes exceed roadway capacity. These alternate routes, including 400 North, are not currently designed for, or intended to accommodate, an increase in capacity.
Increase in Travel Time Resulting from Congestion

For existing (2008) conditions, travel time on SR-30 from 200 North (at 1400 West) to 400 North (at 200 East) is approximately 6.75 minutes during the PM peak hour. For 2035 no build conditions, travel time on SR-30 is modeled to increase to 19.5 minutes during the PM peak hour for the same route. It is likely that travelers will seek other routes before waiting almost 20 minutes on a congested SR-30 roadway.

Traffic Capacity and Excessive Intersection Delay

Traffic on Main Street already exceeds capacity. For 2035 conditions, traffic on most of the major north-south and east-west routes in Logan will also exceed capacity. For no build conditions, the connection of SR-30 and US-89 requires turning movements at the intersection of 200 North/Main Street and the intersection of 400 North/Main Street. For existing conditions, these intersections experience moderate delays. In 2035, these two intersections are projected to experience excessive delays. During the peak hours, vehicles would have to wait several light cycles to get through the intersections. The left turns from one congested facility (SR-30) onto another congested roadway (Main Street) would result in excessive delays for east-west traffic and reduce the operational efficiency of both SR-30 and Main Street.

ES.2 PURPOSE OF THE CORRIDOR STUDY PROCESS

The purpose of this Corridor Study is to identify alternatives that may:
- Improve east-west traffic flow conditions and level of service on SR-30 to accommodate future growth.
- Improve the east-west regional connectivity of SR-30 and US-89.
  - Reduce the use of existing and planned north-south road capacity for east-west trips.
  - Reduce delays on SR-30 associated with Main Street turning movements at the 200 North and 400 North intersections.

ES.3 ALTERNATIVES SCREENING

The SR-30 alternatives screening process included four steps as shown in Figure ES-2. Chapter 2 documents the process and results for alternatives identification, preliminary screening, secondary screening, and alternatives comparison. Each step of the alternatives screening process was iterative and involved a process of analysis, recommendations, and validation utilizing a multidisciplinary study team composed of environmental, engineering, and traffic experts.
As a result of the alternatives screening process, four alternatives were recommended. In the future, additional study of these alternatives needs to be completed in a subsequent environmental study before a project can be recommended for construction. Through the alternatives analysis and design refinement process, mitigation measures may be developed to reduce impacts, reduce cost, and improve operational performance.

Maps depicting the four recommended alternatives are shown here and in Section 2.4.2.4 of Chapter 2:
Figure ES-4: Map of 5 Lanes on 400 North

Figure ES-5: Map of 5 Lanes on 400 North (with Westward Extension)
ES.4 PUBLIC INVOLVEMENT

Early and continuing coordination with the general public and appropriate public agencies was part of the project development process that occurred during the SR-30 SES and Corridor Study. Scoping was utilized to identify the range of actions, alternatives, project effects, and methods of assessment. UDOT continued to gather public input through the SES and Corridor Study process through providing a number of opportunities for active participation from a variety of audiences, including proponents and opponents of the project.

The public participation process for the SR-30 Corridor Study is further described in Chapter 3. The tools used in the process, including strategies for providing information to the public about the proposed SR-30 Corridor Study process, proposing alternatives, and soliciting input from the public on the environmental document are included in Chapter 3 and in extensive detail in Appendix D.

ES.5 NEXT STEPS

This document serves as the record of meetings, data collection, analysis, and alternatives screening that occurred from early 2008 through early 2011. As previously noted the study process completed during this time frame began as a State Environmental Study (SES) but due to lack of funding a change in focus for the study area occurred and the effort was shifted into a Corridor Study. The detailed impact analysis that typically occurs in an SES was not completed for this Corridor Study. An impact analysis will need to be completed as funding is identified to move forward with any roadway improvements in the SR-30 study area. The four alternatives recommended in Chapter 2 could all be considered in such an improvement project. In addition, if desired by UDOT, other agencies or the public, it is possible that other alternatives may be considered during future project implementation.
Ch. 1 Purpose & Need
1.0 BACKGROUND, PURPOSE, AND NEED

The State Route 30 (SR-30) Corridor Study (Corridor Study), prepared by the Utah Department of Transportation (UDOT), identifies long-term, east-west transportation needs on SR-30 between 1400 West and Main Street (United States Route 89/91 [US-89/91]) in Logan, Utah. The work completed during this Corridor Study does not comprise a formal National Environmental Policy Act (NEPA) process or State Environmental Study (SES) process, but this Corridor Study can feed into either a NEPA or SES framework. The Corridor Study assesses transportation improvement alternatives to address the transportation needs of community. This is an initial planning document that identifies and compares several alternatives to improve east-west mobility on SR-30. Moving forward, UDOT will use this Corridor Study as the basis for a more detailed environmental study (NEPA or SES) that will consider the environmental impacts of one or more alternative and must be completed prior to any roadway project implementation.

As noted above and illustrated in Figure 1-1, this Corridor Study evaluates transportation capacity and connectivity improvements to 1.75 miles of SR-30 (also known as 200 North) between 1400 West and Main Street in Logan, Utah (study area). SR-30 is the primary east-west arterial roadway in Logan (Logan City 2007). The roadway provides local circulation within Logan and serves as a major regional transportation corridor from Interstate 15 (I-15) to the west, through Logan Canyon, and to the Wyoming state line to the east. However, the alignment is not a continuous roadway. The SR-30 alignment is interrupted at Main Street in Logan and requires vehicles to make a two-block, north-south transition (between 200 North and 400 North) before continuing east-west. Additionally along 400 North and through Logan Canyon, SR-30 shares a route with US-89, and this route is only signed as US-89.

This chapter will outline the study area, transportation improvement plans including background information, and potential transportation improvement alternatives that meet this Corridor Study’s purpose and need. Background discussion includes defining the SR-30 corridor study area, past planning studies that identified SR-30 corridor needs, methodology behind the study of long-term transportation needs in the corridor, and various transportation analysis tools used in the Corridor Study. Finally, the chapter’s need and purpose sections define and elaborate on the SR-30 corridor study area needs as well as the purpose driving this Corridor Study.

1.1 BACKGROUND

1.1.1 Study Area

The SR-30 study area is generally bound by 1400 West, 400 North, 200 East, and 200 North. Properties along both sides of the street are included in the study area (see Figure 1-1).

1.1.1.1 Characteristics of Existing Streets within the Study Area

Like most cities in Utah, the streets in Logan are traditionally laid out on a grid plan, so that city blocks are square. The standard block in Logan is about 1/8 mile (660 feet) by 1/8 mile (Logan City 2008). The grid system is discontinuous near the western and eastern extents of the study area. Few east-west roads
continue west of 600 West. The only other east-west through roads in the vicinity are 600 North and 200 South, with both routes approximately 0.5 miles from SR-30. Topographic constraints interrupt the grid system east of 200 East, as a steep canyon runs in a northeast-southwest direction beginning at 200 East and continuing up Logan Canyon.

**Figure 1-1: SR-30 Corridor Study Area**

SR-30 provides the primary east-west regional access, and Main Street provides the primary regional north-south access for the Logan area. At 400 North and Main Street, SR-30 combines with northbound US-89, which turns east and connects Logan to Bear Lake. Westbound from 200 North and Main Street, SR-30 connects Logan to Tremonton and I-15 to the west.

Within the study area the streets are primarily three lanes with the exception of Main Street, which has five lanes. Main Street has two lanes on each side of a center turning lane. Main Street provides the primary connection to other communities north and south of Logan and is a congested roadway. Plans have been approved to widen 1000 West to five lanes to serve as a bypass to Main Street.

The existing right-of-way in the corridor study area along both 200 North and 400 North is approximately 92 to 94 feet wide. The width of the existing paved street along both 200 North and 400 North is generally between 55 and 60 feet.
1.1.1.2 Land Uses Within the Study Area

Logan is the largest city in the Cache Valley and contains most of the services and employment in the region (Logan City 2008). Land uses in the study area are predominately commercial and industrial between 1400 West and 600 West, residential between 600 West and 100 West, and commercial between 100 West and 200 East (see Figure 1-2). Land uses are similar along both 200 North and 400 North. The Logan City General Plan identifies downtown Logan (a north-south corridor along Main Street between 100 West and 200 East) as the central hub for both Logan City and Cache Valley (Logan City 2007).

Figure 1-2: Existing Land Uses in the Study Area

Source: Logan City 2010.

1.1.2 Planning Studies Identifying a Need for SR-30 Improvements

Since the 1990s, various agencies and planning groups have identified a need for east-west transportation improvements in the study area. These include transportation improvement needs identified through the 200 North/400 North corridor and improved connectivity between SR-30 on 200 North and US-89 at 400 North. Transportation deficiencies related to the study area identified in plans include a lack of continuous connectivity between SR-30 and US-89, significant traffic congestion on Main Street between 200 North and 400 North resulting from the lack of continuous connectivity between SR-30 and US-89, and traffic utilizing alternative north-south routes to avoid congestion on Main Street.
1.1.2.1 Utah’s Unified Transportation Plan 2007-2030
To prioritize needed transportation improvements statewide, UDOT and each of the state’s Metropolitan Planning Organizations (MPOs), including the Cache Metropolitan Planning Organization (CMPO), developed Utah’s Unified Transportation Plan 2007-2030 (2007 UUTP). This plan represents local government priorities for the transportation system improvements to roads owned by towns, cities, counties, and the state (UDOT 2007). A state or federally funded project must go through the steps identified in Figure 1-3 for implementation, as defined in the 2007 UUTP. These steps ensure a coordinated statewide effort for road improvements.

1.1.2.2 Statewide Transportation Improvement Program
Improvements to the SR-30 corridor are included in the 2010 Statewide Transportation Improvement Program (STIP) as Project Number S-0030(47)120. The STIP is an annually published, five-year plan of highway and transit projects for the state of Utah. The STIP is UDOT’s official work plan for the development of projects through conception, environmental studies, right-of-way acquisition, planning, and advertising for construction.

1.1.2.3 Cache Metropolitan Planning Organization 2030 Regional Transportation Plan
To qualify for federal highway or transit assistance, every metropolitan area with population of more than 50,000 persons must have a designated MPO responsible for identifying regional transportation problems and identifying projects to address future conditions. CMPO is the MPO for the Logan area.

The CMPO developed the 2030 Regional Transportation Plan (2030 RTP), a component of 2007 UUTP. The 2030 RTP addresses regional network capacity concerns resulting from projected population and employment growth. The 2030 RTP considers all modes of transportation, including transit facilities, bike and pedestrian facilities, and roadways. Priorities identified in the 2030 RTP include preservation and maintenance of major transportation corridors through Cache Valley. Also prioritized is the delineation of future corridors not only for transportation capacity but also of economic importance (CMPO 2007). In order to address regional mobility needs, the 2030 RTP includes a list of projects that are prioritized and organized into several implementation phases. Included in the first implementation
phase (2007-2015) is the widening and realignment of SR-30 from Main Street to 1000 West. As part of the earliest plans developed by CMPO (the 2025 RTP adopted in 2000), SR-30 improvements were identified as a top 10 priority.

1.1.2.4 City of Logan Transportation Master Plan
Logan City Engineering, Community Development, and Public Works departments have identified and prioritized improvements in the SR-30 corridor since the 1995 Logan City General Plan. The Logan City Transportation Master Plan identifies the lack of east-west continuity between SR-30 and US-89 as “a significant barrier to good circulation” (Logan City 2008). The plan proposes re-routing SR-30 to 400 North to create a new primary arterial along 400 North (Logan City 2008). The plan alternately recommends consideration of “an east-west couplet involving 200 North and 400 North” (Logan City 2008).

1.1.2.5 Envision Cache Valley
Envision Cache Valley was initiated by the Cache Valley Regional Council, a group created by an inter-local agreement between Cache Valley jurisdictions to address valley-wide issues and work toward mutually beneficial solutions (Envision Cache Valley 2010). Envision Cache Valley consisted of a public process in which citizens explored the challenges associated with growth and worked toward the creation of a long-term vision for the valley (Envision Cache Valley 2010). The result is a report that may influence future land use plans, but the report does not provide a mechanism for change or have the authority to dictate growth patterns or change adopted land use plans.

Growth scenarios developed by the Envision Cache Valley process were used in a sensitivity analysis to determine how land use changes would affect the need for improvements to SR-30. The results of the sensitivity analysis indicate that for the most aggressive land use control scenario traffic in the SR-30 corridor was projected to increase by 13 percent (UDOT 2010). This increase in traffic was attributed to additional density in Logan that would generate additional vehicle trips along the SR-30 corridor.

1.1.3 Study of Long-Term Transportation Needs
The traffic analysis completed for this Corridor Study assesses existing conditions (2008) and future conditions (2035). The future year 2035 was selected because travel demand can be reasonably anticipated using industry standard practices and it allows for long-range planning assuring the meaningful expenditure of public funds on projects with a 20+ year life span.

1.1.4 Transportation Analysis Tools
The CMPO travel model that was completed in October 2009 was the travel demand forecasting tool used for this Corridor Study process. This regional model distributes vehicle trips based on land use patterns that have been approved by local planning agencies and from population and employment projections that have been compiled by the Governor’s Office of Planning and Budget (GOPB). The GOPB provides demographic estimates and forecasts for the entire state of Utah. The CMPO travel model assesses future traffic patterns at a macro level and provides analysis based on daily traffic volumes. Data from the regional traffic model validated the need for east-west transportation capacity improvements in the SR-30 corridor and identified the need for an improved connection between SR-30 and US-89 (see Section 1.2).
In addition, micro-simulation was used to model the corridor study area. The micro-simulation model is more detailed and specifically addresses traffic patterns within the study area. The micro-simulation model was used to evaluate the function and performance of specific alternatives (see Chapter 2).

Both the travel demand forecasting and the simulation model assume implementation of reasonably foreseeable future projects that have identified funding sources. These projects have been identified in either the STIP or the 2030 RTP and are shown in Figure 1-4. In order to establish the no build condition for this Corridor Study, the model does not include improvements to SR-30 in the study area.

**Figure 1-4: Planned Projects**
1.2 NEED FOR TRANSPORTATION IMPROVEMENTS

1.2.1 Need for Additional East-west Capacity

Travel demand modeling indicates that as the population and employment increase in the Cache Valley there will be an increase in traffic. The existing transportation system within the study area cannot accommodate this increase in traffic. There are many reasons that the traffic will increase in the future, these reasons are discussed in detail below: population and employment growth, travel patterns will require additional capacity and connectivity, major roads in the study area cannot accommodate projected traffic, and the increased travel time projected to occur in the study area.

1.2.1.1 Population and Employment Growth Results in Increased Travel Demand

Population growth in Logan coupled with increasing through traffic on SR-30 and US-89 will continue to place additional demands on the transportation system. Population growth between 1980 and 2008 and 2035 population projections for Cache County are shown in Figure 1-5. The GOPB reports that in 2008 the population of Cache County was 110,025 essentially double the population from 1980. In 2035, population projections for the same area are projected to be 199,132, a more than 80 percent increase over the 2008 population estimate. These figures indicate that the historical and projected growth rate has been relatively constant between 2.5 and 3 percent per year.

Figure 1-5: Cache County Population Growth

![Cache County Population Chart]

Source: GOPB 2009

Corresponding to population growth, the observed historical traffic growth rate in the study area between 1988 and 2008 is 3.4 percent compounded annually, which is consistent with the projected traffic growth rate utilized in the CMPO travel demand model.
Figure 1-6 represents the projected population distribution change from 2008 to 2035 in Cache County according to the CMPO travel demand model. The model is a zone based forecasting tool that subdivides the area into traffic analysis zones (TAZ) to more accurately distribute population and employment according to land uses and socioeconomic data. The data reveal that population changes is anticipated to be concentrated along the US-89/91 corridor north and south of Logan. The study area is mostly built out and only minor population increases are anticipated.

**Figure 1-6: Population Change**
Figure 1-7 represents the projected employment distribution change from 2008 to 2035 in Cache County. The data indicate a significant increase in the concentration of employment within the study area and along major arterial roadways including US-89/91, 1000 West, and SR-30. The distribution of population and employment growth is anticipated to result in an increase in vehicle trips along the SR-30 corridor as well as along most major streets in Cache County.

Figure 1-7: Employment Change
1.2.1.2 Travel Patterns Indicate Need for Additional Capacity and Connectivity in the Study Area

SR-30 is the only east-west route that functions as a primary arterial in Cache Valley. As such, SR-30 provides an important connection to other major transportation systems throughout the region (i.e., I-15, US-89, and US-91). As noted earlier, regional and local plans recognize that there are limited options available for an east-west route out of the valley.

An origin/destination survey was completed in the SR-30 corridor using license plates to track vehicles through the study area. The survey was used to determine the routes that vehicles were taking in the study area. The results, shown in Figure 1-8, indicate:

- Some vehicles traveling east-west transitioning from SR-30 to US-89 divert from Main Street onto other city streets to avoid congestion. This is referred to as traffic spillover.
- Approximately 33 percent of traffic on SR-30 is traveling west to east. Utah State University is the biggest traffic generator.
- Of the east-west trips six percent are regional trips outside of Logan (e.g., Bear Lake traffic).
- Vehicles traveling north (approximately 33 percent of traffic) are primarily headed to destinations south of 1000 North, since vehicles traveling north of 1000 North tend to use 1000 West as a less congested alternative to Main Street.

The license plate survey results indicate that since traffic in the SR-30 corridor is mostly comprised of local trips (e.g., trips west of Logan Canyon and south of 1000 North) improvements in the SR-30 corridor are mostly needed to maintain the function of the local street system. However, improvements are also needed to maintain regional mobility as well as reduce the spillover effects along the corridor and between 200 North and 400 North.
1.2.1.3 Major Roads in the Study Area Cannot Accommodate Projected Traffic

The PM peak hour is the hour that streets experience the highest traffic volume during the peak period between 3 and 6 PM (the peak hour in the study area is between 4:30 and 5:30 PM). The CMPO regional travel demand model for the evening PM peak hour shows that currently the Logan area operates with relatively little congestion. The PM peak hour is the hour that streets experience the highest traffic volume during the peak period between 3 and 6 PM (the peak hour in the study area is between 4:30 and 5:30 PM). Congestion is primarily north-south (along Main Street) and near the Utah State University (USU). USU is the largest traffic destination in the study area. Very few areas operate over capacity currently. In 2035, general trends include heavy north-south and east-west congestion with nearly every route over capacity. Detailed information on the traffic analysis completed during this study process is available in Appendix A.

Travel demand modeling shows that daily projected traffic volumes would substantially increase between 2008 and 2035 on both the east-west and north-south roads in the study area (see Figure 1-9). There is a projected 124 percent increase in traffic volumes on east-west corridors between 200 South and 1400 North as well as a projected 120 percent increase in traffic on the north-south corridors between 400 North and 200 North.
1000 West and 100 West. Generally speaking, there would be few alternate routes to avoid congestion in 2035. Many of the streets would experience traffic conditions similar to conditions on Main Street now, and some would be worse.

**Figure 1-9: Increase in Daily Traffic Volumes in the Study Area**

Main Street currently has two lanes in each direction and is just over capacity, resulting in congestion during the peak period. SR-30 and 400 North are currently one lane in each direction and are currently operating below capacity with little congestion. As shown in Figure 1-10, traffic on Main Street and SR-30 is projected to substantially exceed capacity (for the 2035 conditions), resulting in excessive congestion. Spillover traffic from SR-30 would use 400 North as an east-west alternate route, pushing capacity to near capacity and resulting in congestion and delays on 400 North (see Figure 1-10).

In general, motorists will continue to look for alternative routes as volumes exceed capacity. These alternate routes, including 400 North, are not currently designed for or are intended to function as arterial routes. Specific to the study area, the two major arterials in Logan are Main Street and SR-30, which are both projected to exceed capacity by 2035. Once these major arterial exceed capacity, traffic would spillover onto other parallel streets. This would result in substantial neighborhood traffic infiltration and congestion.
1.2.1.4 Increase in Travel Time Resulting from Congestion

Travel times generated by the transportation model were assigned a Level of Service (LOS) based on the speed of traffic in relation to the posted speed limit. LOS A through C represent free flow conditions with limited interruptions. LOS D and E represent roads that experience some congestion and delays. LOS F represents roads that are heavily congested where delays and stopped conditions are common. For existing (2008) conditions, the travel time on SR-30 from 200 North (at 1400 West) to 400 North (at 200 East) is approximately 6.75 minutes during the PM peak hour, which equates to a LOS C based on travel speeds. For 2035 no build conditions, travel time on SR-30 is modeled to increase to 19.5 minutes during the PM peak hour for the same route, which equates to a LOS F (see Figure 1-11).
1.2.2 The SR-30 and US-89 Connection on Main Street Cannot Adequately Serve Traffic Demand

1.2.2.1 East-west Traffic Uses Require North-south Capacity on Main Street

Current traffic conditions on Main Street already exceed capacity (see Figure 1-10). For 2035 conditions, traffic on most of the major north-south routes parallel to Main Street will also exceed capacity. This congestion is compounded by additional north-south trips generated from east-west traffic. Traffic is currently required to make a two-block transition from SR-30 at 200 North to US-89 at 400 North, which adds more vehicles on already congested routes and impedes traffic flow in both directions.
1.2.2.2 Excessive Intersection Delay at the Connection of SR-30 and US-89

For no build conditions, the connection of SR-30 and US-89 requires turning movements at the intersection of 200 North/Main Street and at 400 North/Main Street. These intersections were modeled to determine the existing and future operating conditions. The intersections were assigned a combined LOS based on the seconds of delay vehicles would experience at the intersections. Under existing conditions, these intersections operate at LOS C. In 2035, these two intersections are projected to operate at LOS F and will experience excessive delays (see Figure 1-12). During the peak hours, vehicles would have to wait several light cycles to get through the intersections. The left turns from one congested roadway (SR-30) onto another congested facility (Main Street) would result in long delays for east-west traffic and reduce the operational efficiency of both SR-30 and Main Street.

Figure 1-12: Delay at Main Street and Intersection Level of Service

Source: UDOT 2010
1.3 PURPOSE OF THE PROJECT

The purpose of this Corridor Study is to identify corridors that may:

- Improve east-west traffic flow conditions and level of service on SR-30 to accommodate future growth.
- Improve the east-west regional connectivity of SR-30 and US-89.
  - Reduce the use of existing and planned north-south road capacity for east-west trips.
  - Reduce delays on SR-30 associated with Main Street turning movements at the 200 North and 400 North intersections.
Ch. 2 Alternatives Analysis
2.0 ALTERNATIVES SCREENING

The State Route 30 (SR-30) alternatives screening process included four steps as shown in Figure 2-1. This chapter documents the process and results for alternatives identification, preliminary screening, secondary screening, and alternatives comparison. Each step of the alternatives screening process was iterative and involved a process of analysis, recommendations, and validation utilizing a multidisciplinary study team composed of environmental, engineering, and traffic experts.

Each alternative was designed to an extent that allowed for a high-level assessment of operational performance and impacts. Alternatives were conceptual at the preliminary screening level (Step 2) and became more defined for the secondary screening (Step 3) and alternatives comparison (Step 4). Alternatives were designed to comply with Utah Department of Transportation (UDOT) design standards.

Figure 2-1: Alternatives Screening Process

<table>
<thead>
<tr>
<th>STEP 1</th>
<th>STEP 2</th>
<th>STEP 3</th>
<th>STEP 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENTIFY ALTERNATIVES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Past Studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Study Team</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Public Comments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Alternatives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRELIMINARY SCREENING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Purpose and Need (Qualitative)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Preliminary Engineering Considerations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Alternatives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SECONDARY SCREENING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Purpose and Need (Quantitative)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Alternatives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVES COMPARISON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Operational Performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Environmental Considerations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Implementation Feasibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Alternatives</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.1 STEP 1: IDENTIFY ALTERNATIVES

Following development of the purpose and need, the SR-30 study team developed eight build alternatives, including alternatives considered in previous Cache Metropolitan Planning Organization (CMPO) and Logan City long range transportation planning efforts (see Section 1.1.2). The alternatives were intended to address the purpose and need of the project.

Next, a series of public meetings were held to present these alternatives and solicit additional alternatives from the public. The process aimed at capturing all possible alternatives that might be suggested through the course of preparing the SR-30 Corridor Study. These meetings resulted in 11 additional and unique build alternatives, totaling 19 build alternatives in all.

The 19 build alternatives represented a range of build options, including everything from reducing automobile dependency by changing future land uses to building a major, new east-west regional road. Chapter 3 offers additional information about public involvement during the alternatives development process.
2.2 STEP 2: PRELIMINARY SCREENING

2.2.1 Preliminary Screening Process

Each of the alternatives was screened through a preliminary screening process that determined if the alternative could meet the 2035 east-west traffic needs in the study area. The preliminary screening process also revealed any major engineering considerations that would affect the safety or function of the road. Preliminary screening was a qualitative step using readily available data and professional judgment. During this step the study team applied the screening criteria defined below. If the alternative met the purpose and need criteria, it was advanced for additional analysis under preliminary engineering considerations. If the alternative met only one (or neither) of the purpose and need criteria, it was eliminated from consideration. If an alternative did not pass the preliminary engineering screening, it was also eliminated from further consideration. Justification for eliminating or progressing alternatives was documented in an alternatives screening matrix, which is summarized in Figure 2-2 and detailed in Appendix B.

2.2.2 Preliminary Screening Criteria

2.2.2.1 Purpose and Need

The purpose and need screening criteria included preliminary screening measures to determine if an alternative could conceptually result in operational traffic conditions that would support the purpose and need of the Corridor Study. Capacity was used as a performance measure to demonstrate that the alternative met the stated purpose of “improving the east-west traffic flow conditions and level of service on SR-30 for future growth.” Connectivity was used as a performance measure to demonstrate that an alternative met the purpose of improving the east-west regional connectivity of SR-30 and US-89. Connectivity and capacity were both performance measures selected by the study team that demonstrated that an alternative met the purpose and need of the project and could be analyzed using professional judgment.

2.2.2.2 Engineering Considerations

Preliminary engineering considerations included analysis of the function and constructability of the transportation system. Preliminary screening measures were developed based on known engineering issues and the 1000 West Corridor Agreement, adopted in April 2008 by UDOT, Logan, North Logan, and Cache County (UDOT 2008). Minimal design was completed on each alternative, and the qualitative analysis focused on engineering “fatal flaws” that would preclude implementation of any one road.

2.2.3 Preliminary Screening Results

Figure 2-2 summarizes the preliminary screening results for the 19 build alternatives. Illustrations of the build alternatives are shown in Appendix B.
**Figure 2-2: Preliminary Screening Results Summary**

<table>
<thead>
<tr>
<th>ALTERNATIVE DESCRIPTION</th>
<th>PURPOSE AND NEED</th>
<th>ENGINEERING CONSIDERATIONS</th>
<th>ALTERNATIVE ADVANCED?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation System Management</td>
<td></td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>Transportation Demand Management</td>
<td></td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>Land Use Pattern Changes</td>
<td></td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>3 Lanes on 400 N and 3 Lanes on 200 N (Bridge on 200 N)</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Flexible Lanes</td>
<td></td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>One-Way Couplets (with Signals along 1000 W at 200 N and 400 N)</td>
<td></td>
<td>D</td>
<td>No</td>
</tr>
<tr>
<td>One-Way Couplets (with Structure at 1000 W)</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>One-Way Couplets (Diverging West of 600 W)</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Unbalanced Lanes</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>5 Lanes on 200 N to 200 E</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>5 Lanes on 200 N Connecting to 400 N East of the Temple</td>
<td></td>
<td>C</td>
<td>No</td>
</tr>
<tr>
<td>5 Lanes on 400 N</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>5 Lanes on 400 N with Westward Extension</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>5 Lanes on 400 N Connecting to SR-30 behind the Jail</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>3 Routes (200 N, 400 N, and 1000 N)</td>
<td></td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>3 Routes (200 N, 400 N, and 1400 N)</td>
<td></td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>5 Lanes on 600 N</td>
<td></td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>Improve N/S Capacity to Reduce E/W Demand</td>
<td></td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>Tunnel/Bridge/Viaduct</td>
<td></td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

**KEY**

- Met Both Criteria
- See Notes A, B, C, D
- Met Neither Criteria

**Notes:**
- N/A - Not included for engineering considerations because alternatives did not meet Purpose and Need
- A - Provides connectivity but not capacity
- B - Provides capacity but not connectivity
- C - Provides adequate signal spacing on 1000 West, but has constructability issues
- D - Identified no constructability issues but does not provide adequate signal spacing on 1000 West
Of the 19 alternatives that were developed, eight alternatives progressed through the preliminary screening step. Eleven alternatives were eliminated. Of the 11 alternatives that were eliminated, eight were eliminated because they did not improve east-west connectivity or increase east-west capacity. As such, these eight alternatives did not meet the purpose and need of the project. The next three alternatives were eliminated due to engineering considerations, including inadequate signal spacing on 1000 West between 200 North and 400 North, topographic constraints on 200 North between 200 East and 300 East, and disproportionate constructability issues associated with a bridge/tunnel connecting SR-30 and US-89.

### 2.3 STEP 3: SECONDARY SCREENING

#### 2.3.1 Secondary Screening Process

Following the preliminary screening, the eight alternatives that were not eliminated from consideration underwent a more detailed secondary screening. The second screening quantified the extent to which each alternative would meet the 2035 east-west traffic needs in the study area. This step utilized traffic modeling tools to predict future traffic patterns in the study area.

The study team provided data from the traffic analysis to indicate how the alternatives would perform relative to the selected screening criteria. The alternatives that did not exceed the minimum performance criteria described below were eliminated from additional consideration.

#### 2.3.2 Secondary Screening Criteria

##### 2.3.2.1 Purpose and Need

The purpose and need screening criteria include minimum performance measures to determine if the alternative would result in operational traffic conditions that would support the stated purpose and need of the Corridor Study.

First, traffic modeling provided the projected travel time between 1400 West and Main Street for each alternative. Travel times were assigned a Level of Service (LOS) based on the speed of traffic in relation to the posted speed limit. LOS A through C represents free flow conditions with limited interruptions. LOS D and E represent roads that experience some congestion and delays. LOS F represents roads that are heavily congested where delays and stopped conditions are common. As discussed in Chapter 1, the existing travel time in the corridor is 6.75 minutes, and the projected under the no build condition travel time is 19.5 minutes. LOS D, E, and F conditions are defined below for travel times between 1400 West and Main Street.

- LOS A through LOS D - less than 11 minutes
- LOS E - 11 to 14 minutes
- LOS F - more than 14 minutes

##### Secondary Screening Criteria

<table>
<thead>
<tr>
<th>Purpose and Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel time - LOS E or better</td>
</tr>
<tr>
<td>Does not use north-south road capacity</td>
</tr>
<tr>
<td>Intersection LOS E or better at 200 North/Main Street and 400 North/Main Street</td>
</tr>
</tbody>
</table>
Alternatives with a travel time of less than 14 minutes (LOS E or better) were considered to meet the purpose of improving the east-west traffic flow conditions and level of service on SR-30 for future growth.

Second, the study team considered if an alternative would use north-south road capacity. North-south routes in Logan are capacity constrained, and it is inefficient to use north-south roads to accommodate east-west trips. As described in Chapter 1, under the existing and no build conditions, east-west trips connecting from SR-30 to US-89 are required to utilize a two-block, north-south segment of Main Street. Alternatives that would provide a new transition or additional capacity to accommodate traffic in this two-block segment were considered to provide connectivity, thus meeting the purpose of reducing the use of existing and planned North-south road capacity for east-west trips.

Third, traffic modeling also provided a projected LOS for the intersections of 400 North/Main Street and 200 North/Main Street. The intersections were assigned a combined LOS based on seconds of delay. As described in Chapter 1, under existing conditions, these intersections operate at LOS C (34 seconds of delay). In 2035 for the no build conditions, these two intersections are projected to operate at LOS F (119 seconds of delay). LOS D, E, and F conditions are defined below in seconds of intersection delay for the intersections of 400 North/Main Street and 200 North/Main Street.

- LOS D - up to 55 seconds
- LOS E - 56 to 80 seconds
- LOS F - more than 80 seconds

Alternatives with intersection delay of less than 80 seconds (LOS E or better) were considered to meet the purpose of reducing delays on SR-30 associated with Main Street turning movements at the 200 North and 400 North intersections. To proceed to the next level of screening, an alternative had to meet all three screening criteria regarding travel time, north-south capacity, and intersection delay.

### 2.3.3 Secondary Screening Results

Figure 2-3 compares the projected travel times of the eight alternatives still under consideration. While all of the alternatives would perform better than the no build conditions, two of the alternatives would operate at LOS F. These alternatives include the 3 Lanes on 400 North and 3 Lanes on 200 North (Bridge on 200 North) Alternative and the 5 Lanes on 200 North Connecting to 400 North East of the Temple Alternative. These two alternatives were eliminated from consideration.

Figure 2-4 compares the projected intersection levels for service of the eight alternatives. Again, all of the alternatives would perform at better levels of service than the no build conditions. However, two of the alternatives would operate at LOS F. These alternatives include the 3 Lanes on 400 North and 3 Lanes on 200 North (Bridge on 200 North) Alternative and the Unbalanced Lanes Alternative. These two alternatives were eliminated from consideration.
Figure 2-3: Travel Time Results

*Note: The 5 Lanes on 400 N alternatives represent three different alternative alignments on the west end of the study area because the travel time results would be the same for all three alternatives.

Source: UDOT 2010
Of the eight alternatives that progressed through the preliminary screening (Step 2), five alternatives were determined to meet the purpose and need, and three alternatives were eliminated. The results of the secondary screening are summarized in Figure 2-5 and detailed in Appendix C.
Figure 2-5: Secondary Screening Results Summary

<table>
<thead>
<tr>
<th>ALTERNATIVES</th>
<th>IMPROVE EAST/WEST TRAFFIC CONDITIONS</th>
<th>REDUCTION OF NORTH/SOUTH ROAD CAPACITY</th>
<th>REDUCTION OF MAIN STREET DELAYS</th>
<th>ALTERNATIVE ADVANCED?</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Lanes on 400 N and 3 Lanes on 200 N (Bridge on 200 N)</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>No</td>
</tr>
<tr>
<td>One-Way Couplets (with Structure at 1000 W)</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>Yes</td>
</tr>
<tr>
<td>One-Way Couplets (Diverging West of 600 W)</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>Yes</td>
</tr>
<tr>
<td>Unbalanced Lanes</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>No</td>
</tr>
<tr>
<td>5 Lanes on 200 N to 200 E</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>No</td>
</tr>
<tr>
<td>5 Lanes on 400 N</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>Yes</td>
</tr>
<tr>
<td>5 Lanes on 400 N (with Westward Extension)</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>Yes</td>
</tr>
<tr>
<td>5 Lanes on 400 N (Connecting to SR-30 behind the Jail)</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>Yes</td>
</tr>
</tbody>
</table>

**KEY**

- Improve East/West Traffic Conditions (Travel time from 1400 W to Main Street)  
  - LOS A-D  
  - LOS E  
  - LOS F
- Reduction of North/South Road Capacity for East/West Movement  
  (Does the alternative use existing or planned North/South capacity)  
  - Yes  
  - No
- Reduction of Main Street Delays (Level of Service (LOS) on Main Street at 200 N and 400 N)  
  - LOS A-D  
  - LOS E  
  - LOS F
2.4 STEP 4: ALTERNATIVES COMPARISON

2.4.1 Alternatives Comparison Process

Following the secondary screening process, the remaining five alternatives were compared to analyze operational considerations, environmental considerations, and feasibility of implementation. Alternatives were not eliminated based on any single operational, environmental, or feasibility issue. For each operational, environmental, and implementation element, alternatives were first independently analyzed and a response was provided in a matrix. Responses were considered collectively and performance ranges were developed to compare alternatives.

2.4.1.1 Operational Considerations

Operational considerations include analysis of both the safety and function of the transportation system. Conceptual designs were used to ensure that the alternative was free of issues that would impede the road’s operation or pose unacceptable safety risks. The questions asked about each alternative related to operations related to driver expectancy, distance between intersections and center-lane miles.

2.4.1.2 Environmental Considerations

Environmental considerations include impact analysis to the natural environment and community. Environmental considerations were developed based on known environmental issues (e.g., presence of wetlands and cultural resources). These considerations were also based on public comments indicating valuable community resources (e.g., trees and community cohesion). The study team relied on aerial photographs, database findings, and a windshield survey to assess potential impacts. Resource inventories would be needed if an environmental study is initiated.

Operational Considerations

- **Driver expectancy**: Would this alternative violate driver’s expectations for how the roadway should operate?
- **Safety**: Is there sufficient distance between intersections to safely and efficiently accommodate traffic?
- **Center-lane Miles**: Would there be an increase in center lane miles over existing conditions?

Environmental Considerations

- **Aesthetics**: What percentage of the mature trees along the alignment would be removed?
- **Historic resources**: How many historic properties would be affected?
- **Community cohesion**: Would the alternative divide an established community?
- **Wetland impacts**: Would the alternative affect potentially jurisdictional wetlands?
- **Right-of-way impacts**: How many acres of right-of-way would be required?
- **School access**: Would the alternative affect school accessibility?
2.4.1.3 Feasibility of Implementation

Implementation feasibility considerations include analysis of the alternative’s consistency with the adopted Logan City general plan (Logan City, 2007) demonstrated public support or opposition for the alternative based on public comments and outreach efforts, and construction and maintenance costs.

2.4.2 Alternatives Comparison Results

The results of the alternative comparison are summarized in Figures 2-6 through 2-8 and detailed in Appendix B.

2.4.2.1 Operational Considerations

As shown in Figure 2-6, the One-Way Couplets alternatives would have more operational issues than the 5 Lanes on 400 North alternatives. The 5 Lanes on 400 North with Westward Extension Alternative performed the best and did not have any identified operational issues. General operational considerations that were taken into account in the analysis are discussed below.

Driver Expectancy Issues

▪ The One-Way Couplets alternatives would prohibit two-way vehicle movements on 200 North and 400 North resulting in out-of-direction travel and requiring signage to be effective. Larger than normal blocks exist west of 600 East, since this area does not maintain the grid street pattern. These large blocks would require substantial out-of-direction travel.

▪ The 5 Lanes on 400 North Connecting to SR-30 behind the Jail Alternative would also result in some out of direction travel associated with an extended dead end on the west end of 200 North, since 200 North would no longer directly connect to SR-30.

Safety Issues

A potential safety issue was identified associated with the location of the driveway to the jail on the curve between 200 North and 400 North. This issue would be a concern for the One-Way Couplets alternatives and the 5 Lanes on 400 North Alternative. Further design refinements may be able to mitigate or eliminate this concern.

Center-lane Miles

Both of the One-Way Couplets alternatives would result in an increase in center lane-miles, since there would be two routes instead of one. Increasing center lane-miles to serve the same traffic volume is inefficient. UDOT intends this roadway to be classified as a principle arterial. According to the Federal Highway Administration (FHWA) functional system classification guidance, a principle arterial should carry a high proportion of the total urban area travel on a minimum of mileage.
2.4.2.2 Environmental Considerations

Under environmental considerations, the One-Way Couplets (Diverging West of 600 West) Alternative performed the best and would generally have fewer aesthetic, historic property, wetland, and relocation impacts. Of the 5 Lanes on 400 North alternatives, the 5 Lanes on 400 North (Connecting to SR-30 behind the Jail) Alternative and the 5 Lanes on 400 North (with Westward Extension) Alternative have the greatest impacts. General environmental considerations that were taken into account in the analysis are discussed below.
Aesthetic Issues:
Both 200 North and 400 North are lined with mature trees that dominate the visual character of the neighborhood. All of the alternatives would require removal of trees to some degree and would change the visual character.

- The 5 Lanes on 400 North alternatives would remove most of the trees along 400 North resulting in major visual changes.
- The One-Way Couplets alternatives would remove nearly the same total number of trees, but the tree removal would occur on both 200 North and 400 North, resulting in a more moderate visual impact along both roads.

Historic Resources:
Many of the buildings along both 200 North and 400 North are considered historic resources, as many may qualify for listing on the National Register of Historic Places. All of the alternatives would affect historic resources.

- The 5 Lane on 400 North alternatives would affect between 50 and 80 historic resources. Most of these impacts would be minor.
- The One-Way Couplets alternatives would affect less than 24 historic resources. These impacts would also be minor.

Wetlands:
Wetlands are primarily present on the west side of the study area (west of 600 West). The 5 Lanes on 400 North (Connecting to SR-30 behind the Jail) Alternative and the 5 Lanes on 400 North (with Westward Extension) Alternative would have substantially more wetland impacts than the other alternatives that would be constructed primarily within an urban setting.

Acquisitions:
- The 5 Lanes on 400 North Alternative and the One-Way Couplets (Diverging West of 600 West) Alternative would primarily be constructed within existing right-of-way and minimal acquisitions would be necessary.
- The other alternatives would require more right-of-way associated with new alignments or structures.

Community Cohesion and School Accessibility:
The study team received many comments during the scoping process from residents concerned about impacts on the cohesion of the Ellis neighborhood and school accessibility. The study team considered these comments and determined that the One-Way Couplets alternatives and the 5 Lanes on 400 North alternatives would result in impacts to adjacent properties. However, the location of the impacts would differ by alternative. Since the interests of all effected residents were treated equally, neither set of alternatives was clearly beneficial over the other set of alternatives.
The 5 Lanes on 400 North alternatives would directly affect the residents on 400 North. This would include increased noise and traffic, removal of trees that dominate the aesthetic character of the neighborhood, and reduced setback from the road. The implementation of a 5-lane road with higher traffic volumes would not be consistent with the neighborhood’s character and the 3-lane local streets throughout the area. While traffic would increase on 400 North, it would decrease on 200 North. These changes may affect pedestrian movements, reducing business and service accessibility along 200 North to patrons outside of the neighborhood. These changes would be substantial for residents along 400 North and businesses along 200 North. However, overall travel patterns, service accessibility, access to schools, and community interaction and character for the entirety of the Ellis neighborhood would not substantially change. Realignment of SR-30 to 400 North would also affect fewer Ellis Elementary School students, since all but two blocks of the Ellis catchment area is south of 400 North. However, these students would have to cross a wider road with more traffic.

Compared to a single 5-lane cross section, the One-Way Couplets alternatives would disperse the east-west traffic across two routes instead of one, resulting in fewer direct impacts for residents along 200 North and 400 North. This includes less traffic, less noise, larger setbacks from the road, and a larger preservation of the existing trees that dominate the neighborhood’s aesthetic character. However, these facilities would affect a larger portion of the neighborhood and may create an isolated area between 200 North and 400 North that is bound by major transportation facilities. Additionally, out-of-direction travel necessitated by one-way couplets would increase traffic on neighborhood streets adjacent to both 200 North and 400 North. Studies indicate that speeds on one-way couplets tend to be higher due to less congestion and fewer conflicting turning movements. One-way couplets would also affect a larger proportion of the students attending Ellis Elementary School, since most students in the Ellis catchment area would have to cross either 200 North or 400 North to get to school.

Figure 2-7 shows the results of the environmental considerations for the alternatives comparison.
### Figure 2-7: Alternatives Comparison-Environmental Considerations

<table>
<thead>
<tr>
<th>Alternatives</th>
<th>Environmental Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aesthetics</td>
</tr>
<tr>
<td>One-Way Couplets (with Structure at 1000 W)</td>
<td>●</td>
</tr>
<tr>
<td>One-Way Couplets (Diverging West of 600 W)</td>
<td>●</td>
</tr>
<tr>
<td>5 Lanes on 400 N</td>
<td>●</td>
</tr>
<tr>
<td>5 Lanes on 400 N (with Westward Extension)</td>
<td>●</td>
</tr>
<tr>
<td>5 Lanes on 400 N (Connecting to SR-30 behind the Jail)</td>
<td>●</td>
</tr>
</tbody>
</table>

**Key**

- **Aesthetics** (% of trees on alignment removed)
  - ● 0 - 20%
  - ○ 21 - 33%
  - ● 34 - 67%
  - ○ 68 - 100%

- **Historic Resources** (% of historic properties affected)
  - ● 0 - 24
  - ○ 25 - 50
  - ● 51 - 80

- **Community Cohesion** (Each alternative has tradeoffs. No alternative appears to have a clear benefit or negative impact. Each alternative was rated neutral ●)

- **Wetlands** (Acres of wetlands impacted)
  - ● 0 - 1
  - ○ 2 - 3
  - ● 4 - 6

- **Acquisitions** (% of acres acquired)
  - ● 0 - 12
  - ○ 13 - 24
  - ● 25 - 36

- **School Accessibility** (Each alternative has tradeoffs. No alternative appears to have a clear benefit or negative impact. Each alternative was rated neutral ●)
2.4.2.3 Feasibility of Implementation

As shown in Figure 2-8 and as related to feasibility of implementation, the 5 Lanes on 400 North Alternative and the One-Way Couplets (Diverging West of 600 West) Alternative would be the most feasible to implement. Implementation feasibility considerations that were taken into account in the analysis are discussed below.

Consistency with Local Plans:

The Logan City Transportation Plan (Logan City, 2007) proposes re-routing SR-30 to 400 North to create a new primary arterial along 400 North. Alternately, the plan recommends consideration of an East-West couplet involving 200 South and 400 South. All alternatives are considered to be consistent with the general plan.

Community Support:

Support for each alternative was determined based on the comments received at a number of meetings held with elected officials, a community coordination team, and the general public. A majority of the public participants either lived on 400 North or owned a business in the study area.

- The general sentiment from participants was that one-way couplets would be preferable to a single, 5-lane cross section.
- Few participants were in favor of a 5-lane cross section on 400 North.

Cost of Construction and Maintenance:

- The 5 Lanes on 400 North Alternative would be the least costly of all the alternatives (roughly one-third of the cost of the most expensive alternative).
- Construction and maintenance costs were disproportionally higher for the One-Way Couplets (with Structure at 1000 West) Alternative.
- The other alternatives fell into the moderate cost range.

Other Feasibility Considerations:

This Corridor Study does not include a feasibility assessment of converting one-way couplets, with two routes instead of one, into a state owned and maintained road. Ultimately, this would be a legislative decision. UDOT can only make recommendations.
2.4.2.4 Alternative Recommendations

Of the five alternatives that progressed through the secondary screening, four alternatives were recommended for further consideration. The *One-Way Couplets (with Structure at 1000 West)* Alternative was eliminated from consideration, because when compared to the other alternatives, it consistently performed poorly in a majority of categories, including driver expectancy, safety, increase in center lane-miles, right-of-way acquisition, and costs of implementation.

At the conclusion of the screening process, four alternatives advanced. Maps of these alternatives are depicted in Figures 2-9 through 2-12. Moving forward, additional study of these alternatives needs to be completed in a subsequent environmental study before a project can be recommended for implementation. Through the alternatives analysis and design refinement process, mitigation measures may be developed to reduce impacts, reduce cost, and improve operational performance.
Figure 2-9: Map of One-Way Couplets (Diverging West of 600 West)

Figure 2-10: Map of 5 Lanes on 400 North
Figure 2-11: Map of 5 Lanes on 400 North (with Westward Extension)

Figure 2-12: Map of 5 Lanes on 400 North (Connecting to SR-30 behind the Jail)
Ch. 3 Public & Stakeholder Coordination
3.0 PUBLIC AND STAKEHOLDER COORDINATION

Early and continuing coordination with the general public and appropriate public agencies is an essential part of the project development process. Beginning in 2008, Utah Department of Transportation (UDOT) solicited input from the public and interested agencies on the nature and extent of the proposed actions, alternatives, and impacts to be addressed in an environmental document. The project began as the State Route (SR)-30 1400 West to Main State Environmental Study (SES), but due to funding changes, the SES became a Corridor Study. As described in Chapter 1 and 2, the Corridor Study includes a purpose and need as well as analysis of alternatives, but it does not include selection of a preferred alternative or detailed environmental analysis. UDOT continued to gather public input through both the SES process and the Corridor Study process, and provided a number of opportunities for active participation from a variety of audiences, including proponents and opponents of the project.

This chapter documents the public participation process and discusses the tools used in the process, including strategies for providing information to the public about the decision process, the purpose and need, and the alternatives.

3.1 PUBLIC PARTICIPATION PROCESS

3.1.1 Overview

The public participation strategy for the Corridor Study was based on extensive outreach to the stakeholders in the study area. The process began with a public scoping meeting and utilized a variety of additional outreach methods throughout the Corridor Study process.

3.1.2 Outreach Components

Outreach for public participation was accomplished through various means, including direct mailing of project newsletters and questionnaires to residents and businesses located in the study area, a news release, one-on-one meetings with stakeholders, a project website and hotline, articles in local newspapers, and implementation of an Executive Stakeholder Committee and a Stakeholder Forum. Specific information regarding each activity is described below.

3.1.2.1 Business and Residential Questionnaire

The first activity to gain widespread public input was by mailing out a questionnaire. Residents and businesses along 400 South received these questionnaires. Questionnaires were also made available on the project website and at public meetings. The questionnaire asked for concerns, suggestions, as well as travel behavior and preferences for transportation within the project area. The study team received 37 completed questionnaires from residential stakeholders and four from business stakeholders. Results from the questionnaires are included in Appendix D.
3.1.2.2 Project Newsletters and Mailing List

In April of 2008, a project newsletter was produced and delivered to businesses and residents in the study area. The project newsletter contained information about the decision process and relevant contact information. The newsletter is included in Appendix D. The project newsletter was sent to a mailing list of over 1,800 stakeholders. The mailing list contained businesses and residents that were within one quarter mile radius of the study corridor, plus any other interested parties that had requested to be informed about the project. The project mailing list was updated throughout the SES/Corridor Study to include respondents from the scoping process. Two additional newsletters were sent to the mailing list to provide a status update and notify the public of any upcoming meeting.

3.1.2.3 Meetings

Numerous meetings were held with different groups and with individual stakeholders between 2008 and 2010, Table 3-1 documents the meetings that were held.

Table 3-1: Stakeholder Meetings

<table>
<thead>
<tr>
<th>Date</th>
<th>Stakeholder</th>
<th>Summary</th>
<th>Attendees</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/24/2008</td>
<td>400 South Residents Meeting</td>
<td>Project Launch Initial Meeting</td>
<td>24</td>
</tr>
<tr>
<td>5/15/2008</td>
<td>Agency Scoping Meeting</td>
<td>Agency Coordination</td>
<td>8</td>
</tr>
<tr>
<td>7/29/2008</td>
<td>Local Government Briefing</td>
<td>Local Government Coordination</td>
<td>Not Available</td>
</tr>
<tr>
<td>7/29/2008</td>
<td>Stakeholder Forum Group</td>
<td>Pre- Public Meeting</td>
<td>29</td>
</tr>
<tr>
<td>7/30/2008</td>
<td>Public Open House</td>
<td>Public Information and Comment</td>
<td>106</td>
</tr>
<tr>
<td>9/2/2008</td>
<td>Stakeholder Forum Group</td>
<td>Post-Public Meeting Update</td>
<td>19</td>
</tr>
<tr>
<td>9/16/2008</td>
<td>On-site Visit</td>
<td>One-on-One Meeting regarding Irrigation and Drainage</td>
<td>8</td>
</tr>
<tr>
<td>9/29/2008</td>
<td>Cache County Sheriff</td>
<td>One-on-One Meeting regarding County Jail Issues</td>
<td>4</td>
</tr>
<tr>
<td>9/29/2008</td>
<td>Quansys Biosciences</td>
<td>One-on-One Meeting</td>
<td>5</td>
</tr>
<tr>
<td>10/29-30/2008</td>
<td>27 Personal Interviews</td>
<td>One-on-One Stakeholder Meetings</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>8/7/2009</td>
<td>Logan City Officials</td>
<td>One-on-One Meeting regarding City concerns and issues</td>
<td>2</td>
</tr>
<tr>
<td>8/7/2009</td>
<td>Sheriff’s Department</td>
<td>One-on-One Meeting regarding Sheriff’s Complex Issues</td>
<td>2</td>
</tr>
<tr>
<td>8/18/2009</td>
<td>Cache County/MPO</td>
<td>One-on-One Meeting regarding CMPO coordination and concerns</td>
<td>2</td>
</tr>
<tr>
<td>8/18/2009</td>
<td>Ellis Elementary School</td>
<td>One-on-One Meeting regarding Resident Concerns and School crossings Issues</td>
<td>1</td>
</tr>
<tr>
<td>9/14/2009</td>
<td>Logan City Council</td>
<td>Logan City Coordination</td>
<td>4</td>
</tr>
</tbody>
</table>
Table 3-1: Stakeholder Meetings (cont’d)

<table>
<thead>
<tr>
<th>Date</th>
<th>Stakeholder</th>
<th>Summary</th>
<th>Attendees</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/14/2009</td>
<td>Logan City Public Works</td>
<td>One-on-One Meeting regarding Logan City Coordination</td>
<td>1</td>
</tr>
<tr>
<td>2/10/2010</td>
<td>Executive Stakeholder Meeting</td>
<td>Project re-launch coordination</td>
<td>21</td>
</tr>
<tr>
<td>2/10/2010</td>
<td>KSM Guitars</td>
<td>One-on-One Meeting regarding Local business concerns</td>
<td>1</td>
</tr>
<tr>
<td>2/10/2010</td>
<td>Resident</td>
<td>One-on-One Meeting regarding Resident Issues</td>
<td>1</td>
</tr>
<tr>
<td>2/10/2010</td>
<td>Bike/Pedestrian Community</td>
<td>One-on-One Meeting regarding Community group coordination</td>
<td>1</td>
</tr>
<tr>
<td>2/11/2010</td>
<td>School Principal</td>
<td>One-on-One Meeting regarding Community coordination</td>
<td>1</td>
</tr>
<tr>
<td>2/11/2010</td>
<td>Logan Police and Fire</td>
<td>One-on-One Meeting regarding Safety/service issues</td>
<td>3</td>
</tr>
<tr>
<td>2/11/2010</td>
<td>L.W. Miller Offices</td>
<td>One-on-One Meeting regarding Business and residents’ concerns</td>
<td>3</td>
</tr>
<tr>
<td>2/11/2010</td>
<td>Logan Planning Commission and Cache County Council</td>
<td>City and County Issues</td>
<td>2</td>
</tr>
<tr>
<td>2/11/2010</td>
<td>Cache Landmark Engineering</td>
<td>One-on-One Meeting regarding Design and process discussion</td>
<td>3</td>
</tr>
<tr>
<td>2/24/2010</td>
<td>Stakeholder Forum Meeting</td>
<td>Project update and community concerns</td>
<td>29</td>
</tr>
<tr>
<td>4/8/2010</td>
<td>4th North Neighborhood</td>
<td>Neighborhood concerns</td>
<td>1</td>
</tr>
<tr>
<td>3/11/2010</td>
<td>Public Open House</td>
<td>Public Information and Comment</td>
<td>99</td>
</tr>
<tr>
<td>5/13/10</td>
<td>Executive Stakeholder Forum</td>
<td>Notification that Funding had been Eliminated</td>
<td>10</td>
</tr>
</tbody>
</table>

Source: UDOT 2010.

Agency Coordination
An agency meeting was held on May 15, 2008, eight people attended. Participants reviewed the study area and provided comments on the project. Specific comments from agencies, including letters that were mailed in after the meeting, are included in Appendix D.

Stakeholder Forums
Throughout the course of the project three stakeholder forum meetings were held. Meeting minutes are included in Appendix D. The Stakeholder Forum included representatives with an interest in the project representing a range of organizations, including:

- UDOT,
- Cache County,
- Logan City,
- Logan Schools,
- Cache Metropolitan Planning Organizations (CMPO), and
- Residents and business owners from different areas of the study area.
The first Stakeholder Forum was held on July 29, 2008. The purpose of the Forum was to introduce the project, discuss future traffic conditions, review issues and concerns, and gather input on potential improvements. Stakeholders viewed a presentation about the project and then were divided into groups to discuss residential and business interests separately. The groups were asked to discuss typical sections assuming 5 lanes on 400 North build out, with 200 North downgraded such that access from SR-30 would be eastbound only and the signal at 1000 West and 200 North would be removed.

The second Stakeholder Forum met September 2, 2008 to discuss results of the public meeting, review of alternatives, public outreach needs, and next steps. The Forum discussed comments received at the public meeting and went over responses generated by the project team.

The third Stakeholder Forum meeting was held on February 24, 2010. The original members of the Stakeholder Forum group were invited, as well as some additional stakeholders that had been identified though the project development process.

At the meeting, UDOT presented the information used to develop the purpose and need of the project as well as eight initial alternatives. UDOT solicited comments on the purpose and need and provided maps for stakeholders to draw additional alternatives on. The meeting was an opportunity for the stakeholders to gain an understanding of the process and for the study team to listen to and understand the ideas and issues of the stakeholders.

Executive Stakeholder Forums

In 2010 an Executive Stakeholder Forum was introduced. The intent of the Executive Stakeholder Forum was to provide information to the local political leaders so that they could ask questions and provide information to their constituents. Individual meetings were held with the executive stakeholders prior to holding two executive stakeholder meetings.

An Executive Stakeholder Forum was held on February 10, 2010. In attendance were representatives from UDOT, the Cache County Sherriff’s Department, the Cache Chamber of Commerce, Logan City, Envision Cache County, CMPO, and Cache County. At the meeting, UDOT presented the information used to develop the purpose and need of the project as well as eight initial alternatives. UDOT solicited comments on the purpose and need and provided maps for stakeholders to draw additional alternatives.

A second Executive Stakeholder meeting was held May 13, 2010. At this meeting it was announced that funding for the study had been reallocated by the transportation commission to address other transportation funding shortfalls. An opportunity was provided for the executive stakeholders to ask questions. Appendix D includes minutes from each Executive Stakeholder meeting.

Public Open Houses

Two public open houses were held. Advertisements for the first public meeting were published in The Herald Journal. The meeting was also announced by email and in postcard invitations that were mailed to property owners in the area. The mailing list included residents and businesses located between 200 North and 400 North, from 1400 West to Main Street and other individuals who previously expressed an interest in the project.
The first public open house was part of the SES process and was held on July 30, 2008. The purpose of the open house was to introduce the project, discuss future traffic conditions, review issues and concerns, and gather input on potential improvements. Based on the sign-in sheet, at least 106 individuals attended the meeting and 21 comments were received.

The meeting included a presentation by the project team, a brief question and answer session, followed by an open house format with posters and project team members available to answer questions. Information presented included a brief overview of the SES process and schedule, input received from business and residential questionnaires, the results of the traffic analysis, comparison of possible build alternatives, and a summary of recommendations. In the open house portion of the meeting, participants continued to review project materials and were able to ask individual team members additional questions. UDOT right-of-way staff was available with information that explained UDOT’s right-of-way acquisition process. Project design engineers solicited comments about the alignment and various road section widths and side treatments based on possible build alternatives. A scroll plot was used to show a general alignment and clear zone requirements for each section. A variety of options for road section widths and side treatments were available for participants to select what they felt would work best.

The SES was briefly put on hold and when UDOT continued the SES, they reassessed the purpose and need for the project and considered additional alternatives. A second public open house was advertised in two newspaper advertisements in *The Logan Herald* and *The Aggie Statesman*. Over 1,000 fliers were sent home from Ellis and Bridger Elementary Schools. In addition, the notification was placed on the Logan City website, a morning radio show aired an interview with Sydne Jacques and Charles Mace, and 2,500 flyers were mailed. UDOT Region One Public Involvement Manager Vic Saunders was quoted in the newspaper and also interviewed on television in regards to the SES prior to the second open house.

The second open house was held on March 11, 2010 at Bridger Applied Technology College in Logan. When attendees arrived, they were asked to sign in and each was given an index card to take notes. Ninety nine guests signed in. A 30-minute presentation was given at 4:00, 5:00, and 6:00 PM. No questions were taken during the presentation but attendees were encouraged to take notes and then to discuss questions with members of the study team individually. There was a large map of potential alternatives available and people could provide comments and suggest additional alternatives on the map. Display boards were also set up with information regarding the environmental process, purpose and need for transportation improvements, and traffic data. The CMPO also had a table set up with a map and information about the Envision Cache Growth Scenario process. The study team was given the opportunity to listen and understand the ideas and issues of the stakeholders that were in attendance.

Written comments were accepted at the open house and were accepted by mail or by email to the project website. All comments were collected and are contained in Appendix D of this document.

**One-on-one Meetings**

In all, there were 42 one-on-one meetings that involved one or more of the stakeholders. The one-on-one stakeholder meetings were held to exchange information about the proposed project and to identify concerns and comments from individual stakeholders.
3.1.2.4 Meeting Advertisements

Press Releases

Before the open house in March 2010, the UDOT Region One office distributed a second press release to The Standard Examiner, The Standard Examiner Davis Bureau, The Salt Lake Tribune, and the Davis County Clipper. This press release discussed the format of the open house, the materials and messages presented, and the public attendance and participation.

News Articles
Two news articles were published shortly after the July 25, 2008, press release. One article was published in The Davis County Clipper and the other in The Standard Examiner Davis Bureau.

Other articles published in The Logan Herald Journal included an article published on April 16, 2008, a letter to the editor published Saturday, February 27, 2010, and an opinion piece published on Friday, March 12, 2010. The newspaper articles are included in Appendix D.

Project Website and Hotline
A project website was created. An overview of the SES process and a description of project progress were available on the website as well as information for sending emails to the project team. The email address was sr30logan@utah.gov. The website was www.udot.utah.gov/sr30logan.

A project hotline was available for members of the public to call to ask questions and voice concerns about the project. The project website and hotline information was available on mailers and letters. The hotline number was 1-435-760-4224.

3.2 COMMENTS AND RESPONSES

3.2.1 Public Comments
This section summarizes the comments received from the beginning and throughout the SES/Corridor Study process. The comments are paraphrased to reflect the key concerns, issues, and ideas submitted. The comments are categorized by main points of interest and were reviewed and considered by the study team and UDOT staff in the preparation of this Corridor Study. Full comments are included in Appendix D.
Alternatives

One-Way Couplets
- Support for one-way couplets with traffic signaling improvements such as eastbound traffic on 200 North and westbound traffic on 400 North.
- Strongly suggest adding a stoplight at 1000 West instead of an overpass.

3-Lanes
- Support for the 3 lanes on 200 North and 400 North alternatives.

5-Lanes
- Parking on 400 North could be intermittent or flow based (no parking on street from 7 to 9 AM or 4 to 6 PM).
- Park strip could be modified to spare the trees – take out some curb between the trees for parking.
- Opposed to a 5 lane solution – it will have opposition from 400 North and 200 North.
- SR-30 is an excellent idea – opposed to additional lanes or widening.
- Reduce on-street parking based on traffic flow or only between trees.
- If a 5-lane alternative were implemented, remove houses along one side of 400 North.
- Makes sense to move SR-30 to 400 North as less homes would be impacted, and it is already 4 lanes to 100 West.
- Opposed to a cul-de-sac at 200 North and SR-30 closing through traffic.
- Use an island with vegetation in the middle of 400 North to soften the feel of the busy road. An island in the middle of 200 East with trees and grass would help pedestrians cross more safely.
- Due to the large number of fatalities on SR-30 and Utah (UT) 23, the state should work to widen SR-30 and separate the two-way traffic with barriers.

Move SR-30 out of the study area
- Build a bypass road that would avoid downtown Logan completely.
- Support for the route that goes to 1000 North – there aren’t established neighborhoods there, just apartments with students who will move after graduating.
- Do more study on 1000 North alternative from 4800 West to 1000 West then north to 1800 North or 2500 North and negotiate with Logan City – this will keep heavy commercial vehicles totally out of Logan City on the way north to Idaho.
- 1000 West north of Woodruff Elementary and the residential neighborhood – take it up to 1400 North then over to the Eastside, these roads are already equipped for larger traffic flows.
Flex-Lanes and Traffic Management

- Wants SR-30 to provide 3 lanes and 2 bike paths.
- Change signaling to make traffic flow better and keep both 200 North and 400 North open.
- If SR-30 moves to 400 North people should still have the option to drive on 200 North; that way it decreases traffic on 400 North.
- Take out the stop sign on 200 West and 400 North – this will improve the flow of traffic.
- Time the lights on 400 North so traffic can flow – right now they aren’t timed and the one at 400 North and Main Street is very bad.
- Flexible lanes with an AM-PM direction switch would be a nightmare.
- Support for the option of unbalanced lanes and not widening the street.
- Please consider options that will keep the integrity of both 200 North and 400 North.
- All existing roads in the area should be used – current and projected traffic can be managed if all the existing east-west roads are utilized – putting the bulk of the traffic on one road would create another Main Street situation (all the traffic on one road) and would constitute poor planning.
- Wait and see what happens at Thiokol – these people use the road heavily and if it closes completely we won’t need the road as quickly.

Transit

- Look into alternate types of transportation
- “Trax” type transportation to the University free to students.
- Mass Transit is a better option for commuters and to get people from West to East, - More education to get people to ride buses and carpool.
- Designated bus lanes – this provides incentive for people to use it.
- Put in a commuter lot for people going to the University.
- Use zip codes to match people who want to carpool.

Structures

- Build an overpass at 400 North and Main Street for traffic going up Logan Canyon.
- Is it possible to use overpasses at 400 North and 1000 West or at 200 North and 1000 West?
- Will a viaduct work on 400 North over 600 West?
- Build a tunnel under the street.
- Build an overpass or a bypass over the street.
Preserve 400 North Neighborhood Landowner Concerns

- Support for preserving/enhancing the quality of the neighborhood from 600 West to 200 West.
- Support for the best traffic flow with the least impact on the neighborhood.
- With a 5 lane road no one will want to buy or settle in the area and will destroy a lovely neighborhood – quality people will be turned off and go elsewhere.
- Want to keep the neighborhood quiet and calm.
- The Westside of Logan is already getting trashy; the Eastside always wins.
- Why are my rights less than those who are tired of the traffic?
- Please leave our street alone.
- The study must look at the quality of life and the people that live in the area and not be as concerned for the people just passing through.
- What about the people that live in the middle of these two roads?
- In order for the inner-city to be reclaimed for middle class families, a transportation plan needs to be adopted that does not divide the area.
- People who bought homes on 200 North knew what they were getting themselves into by being on a state road, but 400 North residents did not.

Safety of Residents and School Children, Traffic Concerns

- Concerned that the model inputs are not accurate
- Concerned about general safety and ease of getting in and out of the driveway.
- Concerned about the safety of the school children crossing a busy road.
- It will be very dangerous for people to walk on the sidewalks with the 5 lane road coming right to the sidewalk.
- 5 lane road will add to traffic accidents in the area.
- 5 lanes on 200 East would be a huge problem for residents getting in and out of driveway.
- Concerned about safety of children on 200 East with increased traffic and no pedestrian crosswalks.
- Concerned about a negative impact on Ellis Elementary School.
- Can you rationalize putting a high volume of traffic on a street where a high number of children live? Do they not have the right to safety and security like the kids who live in Cliffside or Wellsville?
Chapter 3.0
Public and Stakeholder Coordination

North/South Traffic
- If north-south traffic is managed or diverted then east-west traffic can be prioritized – allowing cars to flow on less lanes and increasing capacity.
- Need a bypass on 1000 West to 1000 North.
- Need to find a solution to assist with north-south traffic.
- The north-south flow is a much bigger problem than east-west and money should be spent to fix this issue first – hopefully UDOT will look at the real problems and not force something on the people in the study area.

Home Owners Concerns
- The needs of home owners along 400 North aren’t being considered (in relation to the 5 lane road).
- Want a road way that increases home values.
- A five lane road will only leave 15 feet from my front steps to the road – no trees or sidewalk.
- Huge trucks driving so close to the houses will rattle them and be very noisy.
- 5 lane road will be an eye sore and quality of life will be reduced.
- Lower income residents will have their neighborhood, finances, and way of life destroyed without compensation to benefit politicians and wealthier residents elsewhere in the valley (environmental prejudice).
- A five lane road will take almost all my front yard.
- Concerned about a decrease in property values.
- Issues with reselling with a five lane road.
- Don’t want to lose street parking.
- If 200 North widened to 5 lanes – what happens to me and my house?
- How close can you bring the road to my house?
- Will UDOT widen one side of the road? If so, what side?
- Will UDOT buy homes from owners on 200 North?
- We own a manufactured home in the path of the project and it is too large to move to another site. What is the process and compensation available from UDOT?
- Would like the city to change the zoning ordinance so residents can rent their houses as 2 units if a 5 lane road is built.
- Concerned with increased speed and road capacity.
Community and Environmental Concerns

- The community social and educational needs have to be recognized and remediated.
- People being able to walk to the elementary, middle, and high schools and downtown – walk ability is very important.
- Concerned about having a traffic light on 1000 West and 200 South – new subdivisions coming in need to connect to 1400 West and 200 North and 600 South.
- Concerned with making decisions now when traffic issues may change when SR-252 (1000 West) readily moves traffic both north-south and east-west.
- Cache Valley will continue to grow but it’s hard to predict where impacts and use will be.
- Residents can change their behavior (use mass transit) rather than sacrifice a few for the many.
- Afraid that if we’re not careful Logan will turn into Ogden and Logan is such a beautiful place to live.
- Please make whatever route in downtown area pedestrian friendly for walking and biking – Logan City wants people to walk.
- Keep traffic away from downtown Main Street – don’t want to add to the congestion.
- Future development should be done without closing down or discontinuing the use of existing roads or rights of way.
- Consider ways to route traffic around Logan without having to the center of Logan.
- Stop sprawl on Cache Valley – concentrated growth is better than spread out growth.
- Businesses on 200 North will be circumvented without consultation.
- The loss in local control is not worth the benefit to the city/county of having the state pay the over 15 million for a marginally useful road “improvement.”
- Noise is a concern with added truck traffic.
- Logan must restrict use of engine breaks on trucks.
- Do not want to lose the trees that the 5 lane road would take out.
- What are you going to do about 18 Wheelers?
- Concerned about air quality.
- Need to reduce automobile dependency, not increase it with a new road.
- Avoid financial and environmental burden of wetland mitigation.
Construction/Residential Access Concerns

- The irrigation canal supplies water to the Benson area May 1 to Oct 30 – Construction timing will be an issue.
- Construct the project in increments over a period of time and multiple roads is one possibility of calming shock to the neighborhoods.
- Concerned that 400 North expansion would mean heavier weight crossing the irrigation canal at approximately 250 West.
- Irrigation stakeholders use both sides of 400 North to approximately 1400 West.

Study Process Concerns

- Project purpose is too narrow
- UDOT has already made a decision to proceed with the project and are just pacifying people with the process so they can say the people were involved.
- UDOT has not been forth coming with data or research protocol – the data needs to support the need.
- More data to show specifics where the traffic is really going.

3.2.2 Responses to Comments

UDOT has reviewed each of the comments submitted for the SR-30 SES. Public comments directly shaped the development of alternatives that were considered in this Corridor Study as well as influenced the screening criteria that were used to eliminate alternatives.

Since the SES became a Corridor Study and a preferred alternative has not been selected and impact analysis has not been conducted, individual responses to comments cannot be made at this time. It will be necessary for UDOT to complete additional environmental analysis prior to a project being constructed. At that time, UDOT will again consider public input in the decision making process.
List of Preparers & References
REFERENCES

Cache Metropolitan Planning Organization (CMPO), 2010, Travel Demand Model.


Federal Highways Administration, 1989. FHWA Functional Classification Guidelines. Available at URL: http://www.fhwa.dot.gov/planning/fcsec2_1.htm#ad


Logan City, February 2008. City of Logan Zoning Map.

Logan City, 2010. GIS data.


UDOT, 2008. *SR-252 in Cache County Corridor Agreement Cache County, Logan City and North Logan City, Utah Department of Transportation.*


LIST OF PREPARERS

UTAH DEPARTMENT OF TRANSPORTATION

Charles Mace – Project Manager
Elizabeth Skinner-Ainsworth – Environmental Oversight
Chris Lizotte – Environmental Oversight
Brad Humphreys – Preconstruction Engineer
Darrin Duersch – Traffic Engineer
Victor Saunders – Public Involvement

ENVIRONMENTAL STUDY REPORT TEAM

Jacobs Engineering Group
Rick Black – Project Manager
Jennifer Bassett-Hales – Document Manager
Charles Konopa – Design Lead
Newel Jensen – Design Oversight
Seth Anderson – GIS Technician
Tiffany Carlson – Environmental Planner
Melissa Weber – Environmental Planner
Jonathan Ellsworth – Environmental Planner
Lani Eggertsen-Goff – Environmental Planner
Kathryn Wierzbicki – Graphic Design
Jeremiah Johnston – Technical Editing

Michael Baker
Lorraine Richards – Environmental Planner
Mark Bunnell – Traffic Analysis

Jacques and Associates
Sydne Jacques – Public Involvement
April Gordon – Public Involvement